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Abstract
We present an infinite number of non-local continuity equations of
noncommutative (anti) self-dual Yang–Mills (nc-(A)SDYM) equations using
the induction method of Brézin et al (1979 Phys. Lett. B 82 442) and relate
it to the Lax pair and the parametric Bäcklund transformation of the system.
From the Lax pair, we derive a binary Darboux transformation to generate
solutions of the nc-(A)SDYM equations.

PACS numbers: 02.30.Ik, 11.15.−q

1. Introduction

A well-known example of a multi-dimensional integrable system is the (anti) self-dual Yang–
Mills ((A)SDYM) theory [1–14]. The (A)SDYM equations admit integrability structures such
as the existence of the Lax pair, the Bäcklund transformation and the existence of an infinite
number of continuity equations [1–14]. The four-dimensional (A)SDYM equations reduce
to two-dimensional integrable equations such as the sine/sinh-Gordon equation, Liouville
equation, KdV equation and principal chiral field equation [9–11]. Recently, there has been
an increasing interest in the noncommutative field theories where a field theory is deformed
in the sense of Moyal �-product deformation2 [15]. It has been shown that, in general,

1 On study leave from PRD (PINSTECH) Islamabad, Pakistan.
2 The noncommutativity of space coordinates is defined as

[xµ, xν ] = iθµν,

where θµν is a second rank antisymmetric tensor. The product of two functions in noncommutative space is defined
as

(f � g)(x) ≡ exp( i
2 (θµν∂x1

µ ∂x2
ν ))f (x1)g(x2)|x1=x2=x = f (x)g(x) + iθµν

2 ∂µf (x)∂νg(x) + ϑ(θ2),

where ∂
xi
µ = ∂

∂x
µ
i

and i = 1, 2. The �-product is associative (f � g) � h = f � (g � h).
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noncommutativity of time variables leads to non-unitarity and affects the causality of the
theory [16, 17]. The noncommutative extension of integrable equations has also attracted a
great deal of interest during the last decade and these noncommutative versions of integrable
equations have been shown to admit integrability structures such as the Lax pair, the Bäcklund
transformation, the existence of an infinite number of conserved quantities and zero-curvature
representation [18–28].

The noncommutative extension of the (A)SDYM equations has been investigated by
different authors (e.g. [22–25] and references therein). The nc-(A)SDYM equations reduce
to the ordinary (A)SDYM equations in the limit when the deformation parameter θ vanishes.
Many two-dimensional noncommutative integrable equations such as noncommutative
versions of Korteweg de Vries (KdV) equation, nonlinear Schrödinger equation, principal
chiral field equations, etc are shown to be obtained by dimensional reduction of nc-(A)SDYM
equations (see [24, 25] and references therein). The ADHM (Atiyah–Drinfeld–Hitchin–
Manin) construction of the noncommutative instanton solutions of nc-(A)SDYM equation has
led to some important consequences about the integrability of the system and has been further
extended to twistor interpretation of the ADHM construction and multi-instanton solutions of
nc-(A)SDYM (e.g. [29–35]). A great deal of work has been done concerning noncommutative
solitons in gauge theory and string theory (see, e.g., [36–47]). In the context of string theory
these solutions play very important role and describe noncommutative branes (e.g. [48, 49]).
Particularly, these models and their reductions correspond to D-brane configurations of D0–
D4 brane in N = 2 string theory with a B-field background that induces on D-branes a
noncommutative generalization of a modified U(n) sigma model in (2 + 1) dimensions
[50–53]. Furthermore, the dressing method has been employed for constructing multisoliton
solutions of noncommutative modified U(n) sigma model [54]. Since all the reduced systems
of nc-(A)SDYM equations exhibit integrability properties such as linearization, Lax pair,
existence of an infinite number of continuity equations, multisoliton solutions, Darboux
transformation, etc, therefore, it becomes natural to investigate the existence of an infinite
number of continuity equations and Darboux transformation for nc-(A)SDYM equations. Due
to the matrix nature of the objects involved, the generalization to noncommutative case works
in the same way as in the commutative case. But from the point of view of the integrability
of nc-(A)SDYM equations, it is worthwhile to study the existence of an infinite number of
conservation laws of the system. In this paper, we show that the method of Brézin et al
[55] generalizes to the case of nc-(A)SDYM equations so that the system exhibits an infinite
sequence of conservation laws. The other aspect that we have investigated for our system is
the solution generating method in the form of a binary Darboux transformation. The hope is
that this might explain geometrical structure of noncommutative twistor approach and moduli
space dynamics in the context of nc-(A)SDYM and particularly dynamics of noncommutative
D-branes in string theory. The existence of an infinite number of non-local continuity equations
and the binary Darboux transformation of nc-(A)SDYM equations can also give some insight
into understanding certain algebraic structures and non-perturbative properties of N = 2 string
field theory.

The paper is organized as follows. In section 2, we give a review of the noncommutative
generalization of the (A)SDYM equations and write its Lax pair. In section 3, we use the
Lax pair to obtain an infinite number of continuity equation (conservation laws) of the system
using induction and present the Bäcklund transformation for the conservation laws following
the commutative construction developed in [7]. In section 4, we develop a binary Darboux
transformation for generating solutions of the system and compare some results with those
obtained by dressing method.
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2. nc-(A)SDYM equations—an overview

Let us start by defining Yang–Mills fields on four-dimensional noncommutative Euclidean
space E4. The curvature of 2-form is defined as

F�
µν = ∂µA�

ν − ∂νA�
µ − [A�

µ,A�
ν]�, (1)

where A�
µ are the Yang–Mills fields being n × n matrix-valued 1-forms representing U(n)3

connections and [A�
µ,A�

ν]� is commutator of the fields in noncommutative space defined as
[A�

µ,A�
ν]� = A�

µ � A�
ν − A�

ν � A�
µ.

The coordinates xµ, µ = 0, 1, 2, 3, on noncommutative Euclidean space E4 are related
to the coordinates on noncommutative complex Euclidean space as

xy = x0 + ix3, xȳ = x0 − ix3,

xz = x1 + ix2, xz̄ = x1 − ix2.

The metric becomes ds2 = dxy dxȳ + dxz dxz̄ and the Yang–Mills fields (U(n) connections)
are expressed as

A�
y = A�

0 + iA�
3, A�

ȳ = A�
0 − iA�

3,

A�

z
= A�

1 + iA�
2, A�

z̄ = A�
1 − iA�

2.

The nc-(A)SDYM equations now expressed in complex coordinates are written as

F�
yz ≡ ∂yA

�
z − ∂zA

�
y − [A�

y,A
�
z]� = 0, (2)

F�
ȳz̄ ≡ ∂ȳA

�
z̄ − ∂z̄A

�
ȳ − [A�

ȳ, A
�
z̄]� = 0, (3)

F�
yȳ + F�

zz̄ = 0. (4)

Equations (2) and (3) imply that the connection components can be expressed as

A�
y = g−1 � ∂yg, A�

ȳ = ḡ−1 � ∂ȳ ḡ, (5)

A�
z = g−1 � ∂zg, A�

z̄ = ḡ−1 � ∂z̄ḡ, (6)

where g, ḡ and their inverses with respect to �-product g−1, ḡ−1 are functions of y, ȳ, z, z̄ and
belong to Lie group U(n). The nc-(A)SDYM equations (2)–(4) can also be obtained as the
compatibility condition of the following linear system:

(∂y + λ∂z̄)�
′(y, ȳ, z, z̄; λ) = (A�

y + λA�
z̄) � � ′(y, ȳ, z, z̄; λ), (7)

(∂z − λ∂ȳ)�
′(y, ȳ, z, z̄; λ) = (A�

z − λA�
ȳ) � � ′(y, ȳ, z, z̄; λ), (8)

where � ′(y, ȳ, z, z̄; λ) is some n × n matrix-valued field and λ is the spectral parameter.
The compatibility condition of the linear equations (7) and (8) is the flatness condition of the
1-form connection (�-zero-curvature condition)

(∂z − λ∂ȳ)(A
�
y + λA�

z̄) − (∂y + λ∂z̄)(A
�
z − λA�

ȳ) + [A�
y + λA�

z̄, A
�
z − λA�

ȳ]� = 0. (9)

Equating the coefficients of different powers of λ in the above equation we obtain
equations (2)–(4). Now we define Lax operators for the nc-(A)SDYM equations

L = Dy + λDz̄, M = Dz − λDȳ,

3 The SU(n) gauge group is not closed under the Moyal commutator because of the noncommutativity of matrices
breaks the cyclic property of traces; we, therefore, restrict our analysis to gauge group U(n) that is closed under
Moyal commutator.
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where the operators Dy,Dȳ,Dz and Dz̄ are given by

Dy = ∂y − A�
y, Dȳ = ∂ȳ − A�

ȳ Dz = ∂z − A�
z, Dz̄ = ∂z̄ − A�

z̄,

with

[Dy,Dz]� = 0, [Dȳ,Dz̄]� = 0, [Dy,Dȳ]� + [Dz,Dz̄]� = 0.

In terms of the matrices L and M, the nc-(A)SDYM equations appear as the compatibility
condition of the linear system (7), (8), expressed as

L � � ′(y, ȳ, z, z̄; λ) ≡ (Dy + λDz̄) � � ′(y, ȳ, z, z̄; λ) = 0,

M � � ′(y, ȳ, z, z̄; λ) ≡ (Dz − λDȳ) � � ′(y, ȳ, z, z̄; λ) = 0,

and the zero-curvature condition (9) is equivalent to [L,M]� = 0. The reality condition
satisfied by � ′(y, ȳ, z, z̄; λ) is

� ′(y, ȳ, z, z̄; λ) � [� ′(y, ȳ, z, z̄; λ̄)]† = 1. (10)

Now we consider a gauge transformation

�(y, ȳ, z, z̄; λ) = ḡ � � ′(y, ȳ, z, z̄; λ), (11)

such that the fields A�
ȳ and A�

z̄ vanish. The gauge fields A�
ȳ and A�

z̄ transform as

A�
ȳ → A′�

ȳ = ḡ � A�
ȳ � ḡ−1 + ḡ � ∂ȳ ḡ

−1 = 0,

A�
z̄ → A′�

z̄ = ḡ � A�
z̄ � ḡ−1 + ḡ � ∂z̄ḡ

−1 = 0,
(12)

where ḡ−1 is the inverse of ḡ with respect to the �-product. The rest of components are

A′�
y ≡ J �

y = J �−1 � ∂yJ
�, A′�

z ≡ J �
z = J �−1 � ∂zJ

�,

where J �−1 = ḡ−1 � g and is the inverse of J � with respect to �-product. The gauge-fixed
linear system is

(∂y + λ∂z̄)�(y, ȳ, z, z̄; λ) = J �
y � �(y, ȳ, z, z̄; λ), (13)

(∂z − λ∂ȳ)�(y, ȳ, z, z̄; λ) = J �
z � �(y, ȳ, z, z̄; λ). (14)

The self-duality equation (4) becomes

∂ȳJ �
y + ∂z̄J �

z = 0, (15)

which is a continuity equation or a conservation law. The reality condition (10) is invariant
under gauge transformation (11), i.e.

�(y, ȳ, z, z̄; λ) � [�(y, ȳ, z, z̄; λ̄)]† = 1. (16)

Similarly we can have

∂yJ �
ȳ + ∂zJ �

z̄ = 0, (17)

where

J �
ȳ = ∂ȳJ

� � J �−1, J �
z̄ = ∂z̄J

� � J �−1.

The compatibility condition of the linear equations (13) and (14) is

(∂zJ �
y − ∂yJ �

z + [J �
y ,J �

y ]�) − λ(∂ȳJ �
y + ∂z̄J �

z ) = 0.

The nc-(A)SDYM equation (15) can also be reduced to a noncommutative two-
dimensional principal chiral model if we take xy = xȳ = x0 and xz = xz̄ = x1

∂0J �
0 + ∂1J �

1 = 0, (18)
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where

J �
0 = J �−1 � ∂0J

�, J �
1 = J �−1 � ∂1J

�. (19)

The associated linear equations (13) and (14) become

(∂0 + λ∂1)� = J �
0 � �, (20)

(∂1 − λ∂0)� = J �
1 � �. (21)

The Lax pairs (13), (14) and (20), (21) generate infinitely many non-local continuity equations
which we address in the next section.

3. Non-local continuity equations

In order to derive infinitely many non-local continuity equations (conservation laws) for the
nc-(A)SDYM theory, we adopt the induction procedure of Brézin et al [55] developed for
two-dimensional sigma model and later used by Prasad et al [7] for (commutative) (A)SDYM
equations. We proceed by defining covariant derivatives in the noncommutative space acting
on some scalar function χ , such that

Dyχ = ∂yχ − J �
y � χ, Dzχ = ∂zχ − J �

z � χ,

where

[Dy,Dz]� = 0.

We now suppose that there exist kth currents J �(k)
y and J �(k)

z for k = 1, 2, . . . , n which are
conserved, i.e.

∂ȳJ �(k)
y + ∂z̄J �(k)

z = 0, (22)

such that

J �(k)
y = −∂z̄χ

(k), J �(k)
z = ∂ȳχ

(k). (23)

If we define (k + 1)th currents J �(k+1)
y and J �(k+1)

z as

J �(k+1)
y ≡ Dyχ

(k) = ∂yχ
(k) − J �

y � χ(k), J �(k+1)
z ≡ Dzχ

(k) = ∂zχ
(k) − J �

z � χ(k), (24)

then the currents J �(k+1)
y and J �(k+1)

z are also conserved, i.e.

∂ȳJ �(k+1)
y + ∂z̄J �(k+1)

z = (∂ȳ � Dy + ∂z̄ � Dz)χ
(k),

= (Dy � ∂ȳ + Dz � ∂z̄)χ
(k), using equation (22)

= Dy � ∂ȳχ
(k) − Dz � ∂z̄χ

(k),

= Dy � Dzχ
(k−1) − Dz � Dyχ

(k−1)

= [Dy,Dz]�χ
(k−1)

= 0.

In order to complete the induction, we set J �(1)
y = J �−1 � ∂yJ

�,J �(1)
z = J �−1 � ∂zJ

� and
χ(0) = 1. Note that the conservation of kth current implies the conservation of (k + 1)th
current and as a result an infinite number of conservation laws are obtained through induction.

We now relate the iterative procedure outlined above to the Lax pair (13) and (14) of the
nc-(A)SDYM equations. From equations (23) and (24), we have

∂z̄χ
(k) = −Dyχ

(k−1), (25)

∂ȳχ
(k) = Dzχ

(k−1). (26)
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Multiplying (25) and (26) by λ−k and summing from k = 1 to k = ∞, we write

∞∑
k=1

λ−k∂z̄χ
(k) = −

∞∑
k=1

λ−kDyχ
(k−1), (27)

∞∑
k=1

λ−k∂ȳχ
(k) =

∞∑
k=1

λ−kDzχ
(k−1). (28)

As χ(0) = 1, the summation on the right-hand side of equations (27) and (28) can be extended
to k = 0. By writing

� =
∞∑

k=0

λ−kχ(k), (29)

equations (27) and (28) can be written as

(∂y + λ∂z̄)�(y, ȳ, z, z̄; λ) = J �
y � �(y, ȳ, z, z̄; λ),

(∂z − λ∂ȳ)�(y, ȳ, z, z̄; λ) = J �
z � �(y, ȳ, z, z̄; λ).

This establishes the equivalence of the iterative procedure and the associated linear system of
the nc-(A)SDYM equations. It is straightforward to derive a set of noncommutative version
of compatible parametric Bäcklund transformation from the linear system (13), (14)

J ′�
y − J �

y = λ−1∂z̄(J
′�−1 � J �), (30)

J ′�
z − J �

z = −λ−1∂ȳ(J
′�−1 � J �), (31)

along with the constraint

J �−1 � J ′� − J ′�−1 � J � = λ−1I, (32)

where J ′�
y,J ′�

z satisfy the self-dual equation (15). The compatibility condition of (30), (31)
implies that J �

y ,J ′�
z,J ′�

y and J ′�
z satisfy equation (15). This can be achieved by simply

differentiating equation (30) with respect to ȳ and equation (31) with respect to z̄ and then
adding both the results. For J � and J ′� to be Hermitian, the Bäcklund transformation can be
expressed in terms of two parameters with the constraints given by

λ−1 = eiα, J �−1 � J ′� − J ′�−1 � J � = βI, (33)

where α and β are real constants. The two-parameter Bäcklund transformation (30)–(33)
has been studied in [7] for the commutative case of SU(n) SDYM equations. Also in the
commutative case, the Bäcklund transformation of [7] reduces to the Pohlmeyer’s Bäcklund
transformation for the gauge group SU(2) [6]. (For an earlier account of the Bäcklund
transformation of SU(2) Yang–Mills theory see [5].) The appearance of parameters and
constraint in (30)–(33) is due to the correspondence to two-dimensional models such as
the principal chiral model. A similar Bäcklund transformation has been constructed for a
noncommutative principal chiral model in [56]. The constraints (33) appear while deriving
equation (31) from equation (30). In fact, the derivation implies that the parameters α and β

are real constants. For more details see the commutative case [7].
In the dimensional reduction of the nc-(A)SDYM equations to a noncommutative principal

chiral model, the action of covariant derivatives on χ is defined as [56]

D0χ = ∂0χ − J �
0 � χ, D1χ = ∂1χ − J �

1 � χ,
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where J �
0 and J �

1 are the components of the conserved currents of nc-principal chiral model.
With these covariant derivatives the zero-curvature condition of the model can be expressed
as

[D0,D1]� = 0.

The iteration procedure of the Brézin et al [55] generates an infinite sequence of non-local
conserved quantities. The first two conserved quantities of the sequence are given by

Q�(1) = −
∫ ∞

−∞
dyJ �

0 ,

Q�(2) = −
∫ ∞

−∞
dyJ �

1 +
∫ ∞

−∞
dyJ �

0 �

∫ y

−∞
dzJ �

0 .

(34)

It can be seen from the expression of the second conserved quantity that the density involves
integral of the fields.

4. Binary Darboux transformation of nc-(A)SDYM equations

The Lax pair of the (A)SDYM equations can be used to construct binary Darboux
transformation of the system as explained in [14] and the same procedure can be generalized
to the case of nc-(A)SDYM equations that will lead to the construction of solutions of nc-
(A)SDYM equations. Following [14] we proceed by rewriting the Lax pair (direct Lax pair)
(13), (14) as

∂y� = −λ∂z̄� + J �
y � �

∂z� = λ∂ȳ� + J �
z � �.

(35)

Parallel to this linear system we define another Lax pair (dual Lax pair) for another matrix
field � with spectral parameter λ′ as

∂y� = −λ′∂z̄� − � � J �
y

∂z� = λ′∂ȳ� − � � J �
z .

(36)

The matrix solutions � and � of the direct Lax pair (35) and dual Lax pair (36), respectively,
are related to each other by

�(y, ȳ, z, z̄; λ) = A(λy − z̄, λz + ȳ; λ) � �−1(y, ȳ, z, z̄; λ), (37)

where A(λy + z̄, λz − ȳ; λ) is some arbitrary matrix function. Condition (37) is obtained by
calculating ∂y (� � �) and ∂z (� � �) and solving the resulting equations for λ′ = λ. The
matrix J � can be clearly related to the solution � of (36) and the matrix function A as

J �(y, ȳ, z, z̄) � A(−z̄, ȳ) = �(y, ȳ, z, z̄; λ)|λ=0. (38)

Let ψ be a column solution and φ be a row solution of the Lax pair (35), (36) with spectral
parameters µ and ν, respectively (µ �= ν). If �[1] and �[1] are new matrix solutions satisfying
the direct and dual Lax pairs (35) and (36), respectively, then through a projection operator
(or projector) the one-fold Darboux transformation relates the matrix functions �[1] and �[1]
with � and �, respectively, by

�[1] =
(

I − µ − ν

λ − ν
P

)
� �,

�[1] = � �

(
I − µ − ν

µ − λ′ P
)

,

(39)
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where P is the Hermitian projector, i.e. P † = P = P 2 (for the reality condition (10) to be
satisfied). The corresponding solution J �[1] of the nc-(A)SDYM equation (15) with a given
known solution J � is given by

J �[1] =
(

I +
µ − ν

ν
P

)
� J �, (40)

where J � is the solution of the Lax pair (35) at λ = 0. The solution (40) is interpreted as the
new solution of the nc-(A)SDYM equations (15). The Lax pair for the matrix field �[1] is

∂y�[1] = −λ∂z̄�[1] + J �
y [1] � �[1],

∂z�[1] = λ∂ȳ�[1] + J �
z [1] � �[1],

(41)

and the dual Lax pair for is �[1]

∂y�[1] = −λ′∂z̄�[1] − �[1] � J �
y [1],

∂z�[1] = λ′∂ȳ�[1] − �[1] � J �
z [1].

(42)

Equations (41) and (42) show the covariance of the direct Lax pair and the dual Lax pair
under the Darboux transformation (39). The transformation of �[1] and �[1] implies the
transformation of the currents J �

y [1] and J �
z [1] as

J �
y [1] = J �

y − (µ − ν)
∂P

∂z̄
,

J �
z [1] = J �

z + (µ − ν)
∂P

∂ȳ
,

(43)

and the projector P satisfies the following equations:

∂P

∂y
= −1

2
(µ + ν)

∂P

∂z̄
−

[
1

2
(µ − ν)

∂P

∂z̄
− J �

y , P

]
�

,

∂P

∂z
= 1

2
(µ + ν)

∂P

∂ȳ
+

[
1

2
(µ − ν)

∂P

∂ȳ
+ J �

z , P

]
�

.

(44)

In terms of the vector solutions ψ and φ of the direct and dual Lax pairs (35), (36) with
the spectral parameters µ and ν, respectively, the projector P satisfying equation (44) can be
expressed as

P = ψ � (φ,ψ)−1 � φ. (45)

Here, we have seen that the projector P is expressed in terms of the solutions of the Lax
pair (35) and (36), so that the solution J �[1] will be expressed in terms of the solutions of the
direct and dual Lax pairs.

The successive iteration of binary Darboux transformation gives the solutions of the direct
and the dual Lax pairs as

�[N ] =
(

I − µ(N) − ν(N)

λ − ν(N)
P [N ]

)
� · · · �

(
I − µ(1) − ν(1)

λ − ν(1)
P [1]

)
� �,

�[N ] = � �

(
I − µ(1) − ν(1)

µ(1) − λ′ P [1]

)
� · · · �

(
I − µ(N) − ν(N)

µ(N) − λ′ P [N ]

)
,

(46)

and P [i] is given by

P [i] = ψ(i)[i − 1] � (φ(i)[i − 1], ψ(i)[i − 1])−1 � φ(i)[i − 1], (47)
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where ψ(i)[i − 1] and φ(i)[i − 1] (i = 2, 3, . . . N) are row and column solutions of the direct
and dual Lax pairs (35) and (36) with spectral parameters µ(i) and ν(i), respectively, and are
given by

ψ(i)[i − 1] =
(

I − µ(i−1) − ν(i−1)

µ(i) − ν(i−1)
P [i − 1]

)
� · · · �

(
I − µ(1) − ν(1)

µ(i) − ν(1)
P [1]

)
� ψ(i),

φ(i)[i − 1] = φ(i) �

(
I − µ(1) − ν(1)

µ(1) − ν(i)
P [1]

)
� · · · �

(
I − µ(i−1) − ν(i−1)

µ(i−1) − ν(i)
P [i − 1]

)
.

(48)

The solution �[N ] of the Lax pair (35) is obtained by iteration to N-fold binary
Darboux transformation and �[N ] in equation (46) corresponds to N-soliton solution of the
nc-(A)SDYM equations. The reality condition (10) is satisfied if P [i] is Hermitian.

For the N-fold binary Darboux transformation the direct Lax pair will be

∂y�[N ] = −λ∂z̄�[N ] + J �
y [N ] � �[N ],

∂z�[N ] = λ∂ȳ�[N ] + J �
z [N ] � �[N ],

(49)

and the dual Lax pair will be

∂y�[N ] = −λ′∂z̄�[N ] − �[N ] � J �
y [N ],

∂z�[N ] = λ′∂ȳ�[N ] − �[N ] � J �
z [N ].

(50)

The new currents J �
y [N ] and J �

z [N ] as solutions of (15) are obtained as

J �
y [N ] = J �

y [N − 1] − (µ(N−1) − ν(N−1))
∂P [N − 1]

∂z̄
,

J �
z [N ] = J �

z [N − 1] + (µ(N−1) − ν(N−1))
∂P [N − 1]

∂ȳ
,

(51)

where the projector P [N ] satisfies the following equations:

∂P [N ]

∂y
= −1

2
(µ(N) + ν(N))

∂P [N ]

∂z̄
−

[
1

2
(µ(N) − ν(N))

∂P [N ]

∂z̄
− J �

y [N ], P [N ]

]
�

,

∂P [N ]

∂z
= 1

2
(µ(N) + ν(N))

∂P [N ]

∂ȳ
+

[
1

2
(µ(N) − ν(N))

∂P [N ]

∂ȳ
+ J �

z [N ], P [N ]

]
�

.

(52)

The Nth iterated formulae obtained above generate N-soliton solutions of nc-(A)SDYM
equations. The solution J �[N ] is now expressed in terms of the projector P [i] as

J �[N ] =
(

I +
µ(N) − ν(N)

ν(N)
P [N ]

)
� · · · �

(
I +

µ(1) − ν(1)

ν(1)
P [1]

)
� J �. (53)

If we denote the vector solution of (35) at the spectral parameter λ by ψ̃ and the vector solution
of (36) at the spectral parameter λ′ by φ̃ and use the fact that ψ̃[N ] = 0 for λ = µ(i) with
ψ̃ = ψ(i) and φ̃[N ] = 0 for λ = ν(i) with φ̃ = φ(i), then the multiplicative ansatz (46) can
also be expressed as

�[N ] =
(

I −
N∑

i,k=1

µ(k) − ν(i)

λ − ν(k)
ψ(i) � (φ(i), ψ(k))−1 � φ(k)

)
� �,

�[N ] = � �

(
I −

N∑
i,k=1

µ(k) − ν(i)

µ(i) − λ′ ψ(i) � (φ(i), ψ(k))−1 � φ(k)

)
,

(54)

and the solution J �[N ] will be expressed as

J �[N ] =
(

I +
N∑

i,k=1

µ(k) − ν(i)

ν(k)
ψ(i) � (φ(i), ψ(k))−1 � φ(k)

)
� J �. (55)
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The solution �[N ] expressed in additive form is subjected to the reality condition (10). For
condition (10) to be satisfied the projector P [i] has to satisfy certain algebraic equations and
the solution of these equations is obtained by taking the projectors P [i] to be Hermitian and
mutually orthogonal, i.e.

P †[i] = P [i] = P 2[i], P [i]P [j ] = 0, for i �= j.

Such solutions have been discussed for a noncommutative (2 + 1)-dimensional modified U(n)

sigma model as a reduction of nc-(A)SDYM equations [50–53].
The formalism of binary Darboux transformation for the solutions of nc-(A)SDYM

equations can be compared with the dressing approach for such solutions where the
nc-(A)SDYM equations are reduced to a noncommutative modified U(n) sigma model in
(2 + 1) dimensions (see, e.g., [49–53] and references therein) and it is observed that both
methods give the same results. Using the standard method of Riemann–Hilbert problem with
zeros, the solution of the Lax pair is expressed in a simple form as [49–53]

�[N ] =
(

I −
N∑

k=1

1

λ − ν(k)
R[k]

)
� �, (56)

where matrix R[k] is matrix function independent of λ. By comparing this with our
result (54), we note that

R[k] =
N∑

i=1

(µ(k) − ν(i))ψ(i) � (φ(i), ψ(k))−1 � φ(k). (57)

Let us make few comments on the solution generating method outlined here and the dressing
method outlined in [50–53]. In the binary Darboux transformation we combine the Darboux
transformations for the direct and dual Lax pairs and express the solutions in terms of
projectors. The projectors are expressed in terms of the solutions of both the Lax pairs.
In dressing method introduced by Zakharov and Shabat [57–59], the solution of a system
is obtained by reducing the solution of the spectral problem to that of a Riemann–Hilbert
problems with zeros that implies the possibility of introducing projectors that relate solutions
of Riemann–Hilbert problem in a simple algebraic form by using the analytic properties of the
functions involved. On the other hand, the binary Darboux transformation reproduces same
results without much use of the analytic properties.

5. Conclusions

In conclusion, we have derived an infinite set of non-local conservation laws by using
iterative method of Brézin et al [55] and noncommutative version of a parametric Bäcklund
transformation for nc-(A)SDYM equations. The nc-(A)SDYM equations are obtained as
compatibility condition of a Lax pair. The Lax pair is further used to derive a binary
Darboux transformation that generates solutions of nc-(A)SDYM equations. We conclude that
noncommutative generalization of (A)SDYM equations preserves many of the integrability
structures that are present in commutative (A)SDYM equations. The work can be further
extended to construct the explicit solutions of the system for a given gauge group. It has been
recently shown that most noncommutative integrable equations in three and less dimensions
can be obtained by nc-(A)SDYM equations by suitable reductions (see [20–24] and reference
therein). The applications of binary Darboux transformation for nc-(A)SDYM equations
can further be investigated by understanding the Darboux transformation of noncommutative
integrable equations in (2 + 1) and (1 + 1) dimensions. The Darboux transformation of
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noncommutative principal chiral model in (1 + 1) dimension has been investigated in [56], the
method can be applied to obtain solutions of the noncommutative modified U(n) sigma model
in (2 + 1) dimensions as a reduction of nc-(A)SDYM equations. Another direction to pursue
is to investigate the reductions of noncommutative supersymmetric (A)SDYM equations to
noncommutative supersymmetric integrable models in three and less dimensions (e.g. [60]).
Similarly, the integrable properties such as existence of an infinite number of continuity-
like equations, Lax pair, Bäcklund and Darboux transformation can be investigated for the
noncommutative supersymmetric (A)SDYM equations.
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